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Abstract—Control-flow integrity (CFI) plays a very important
role in defending against code reuse attacks by protecting the con-
trol flows of programs from being hijacked. However, previous
CFI methods suffer from performance overheads, cost, or secu-
rity issues. In this paper, we propose a new CFI based on
a lightweight encryption architecture with advanced encryp-
tion standard (LEA-AES) to address the challenges above. The
LEA exploits AES to encrypt and decrypt return addresses and
instructions at indirect jump destinations, which protects function
calls and indirect jumps from being reused by return-oriented
programming (ROP) and jump-oriented programming (JOP)
attacks. For ROP, the encryption and decryption of return
addresses are performed when the call and ret instructions are
executing; for JOP, the encryption of instructions are performed
when programs are loading into memory and the decryption of
instructions are performed right before they are executing. The
LEA-AES does not need to revise instruction sets of CPU and
its security is also guaranteed by the encryption mechanism in
addition to its high performance. Experimental results showed
that the run-time and loading time overheads of LEA-AES are
both less than 4% and the memory overhead is 0.62%.

Index Terms—Advanced encryption standard (AES), code
reuse attacks (CRAs), control-flow integrity (CFI), jump-oriented
programming (JOP), lightweight encryption architecture (LEA),
return-oriented programming (ROP).

I. INTRODUCTION

BEFORE code reuse attacks (CRAs) [1]–[6], code injec-
tion attacks [7], [8] were widely used by adversaries to
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achieve attacks. In code injection attacks, attackers often inject
malicious codes into programs by exploiting the software
vulnerabilities, for example, stack or heap buffer overflow
vulnerabilities and string formatting bugs. Then attackers over-
write the stack with the addresses of viciously injected codes.
At run-time, the malicious codes will be executed and finally
the system is controlled. Data execution prevention (DEP) [9]
can defend against code injection attacks efficiently, and it thus
has been widely employed on most operating systems (e.g.,
Windows and Linux). In DEP, memory units are marked as
executable or nonexecutable and only the original programs
can be executed. The maliciously injected codes cannot be
executed because the memories available for code injections
(data area) are dedicatedly marked nonexecutable. However,
adversaries may bypass DEP by reusing small fragments of
existing codes to modify the control flow of programs, which
is known as CRAs. The small fragments ending with the ret
or indirect jmp instructions are called gadgets in CRAs.

Return-oriented programming (ROP) [1], [3]–[6] and jump-
oriented programming (JOP) [2], [6] are the most important
instances of CRAs. In ROP, attackers use gadgets that end
with the ret instructions to change the execution flow of pro-
grams, so that the programs will be executed as the wishes
of intruders and finally the intruders may control the systems.
ROP has been theoretically verified to be turing-complete [1].
Compared with ROP, JOP attacks use gadgets which end
with the indirect jmp instructions to assault programs. CRAs
have been successfully realized on numerous architectures,
such as x86 [10], ARM [11], SPARC [12], Atmel AVR [13],
Z80 [14], and PowerPC [1], [3], [5], [15]. Recently, CRAs are
increasingly used to hijack the programs. Many well-known
software products have been attacked by CRAs successfully,
such as Adobe Reader [16], [17], Adobe Flashplayer [18],
or Quicktime Player [5], [19]. In addition, Hund et al. [20]
presented an ROP-based rootkit for the Windows operating
systems which can steer by kernel integrity protection mech-
anisms [5]. This is a very fearful menace to computers.
Moreover, several tools have been developed to search the
useful gadgets automatically [21], which make CRAs easier.

Many methods have been proposed to defend against CRAs
recently. These defenses can be categorized into four types.

1) Randomization-based defenses, such as address space
layout randomization (ASLR) [3]. However, it is still
probable for attackers to construct enough gadgets to
perform CRAs with the knowledge of some randomized
codes [5].
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2) Detection-based defenses, for instance,
ROPdefender [5], signature-based CRAs pro-
tection (SCRAP), and detecting ROP malicious
code (DROP) [22]. But some exceptions are not be
considered in these methods [5].

3) Compiler-based defenses, for example, G-Free [13].
However, these methods need to modify the compiler
and may result in large false positives.

4) Instrumentation-based defenses, such as
branch regulation (BR), transparent run-time
shadow stack (TRSS) [23] and control-flow
integrity (CFI) [6], [24]–[27]. But these methods
may introduce large performance overheads or require
to modify the ISAs.

We will describe these defenses minutely in Section III.
Among those defenses, CFI approach is the most gen-

eral solution. When achieving CFI, first, the control flow
graph (CFG) [6] of a program will be constructed, and then the
CFG checking mechanisms will check whether the program is
executed as the CFG at run-time [24]. There are two kinds of
implementations of CFI, i.e., the software-based CFIs [24] and
the hardware-based CFIs [25]–[27]. Software-based CFI [24]
methods insert IDs and ID-checking instructions before con-
trol flow transitions according to the preconstructed CFG when
the programs are compiling. When call, ret, and indirect
jmp instructions are executing, the ID-checking instructions
will be executed to judge whether the control flow transi-
tions are legal. The illegal jumps of control flow will be
checked and rejected at run-time. However, the implementa-
tions of software-based CFIs often result in high performance
overheads due to the IDs creating, querying, comparing,
and storing [28]. Therefore, a range of hardware-based CFIs
are proposed to reduce the performance overheads of CFI,
such as hardware-assisted fine-grained CFI [26], hardware-
assisted flow integrity extension (HAFIX) [27], and physical
unclonable functions (PUFs)-based CFI [28]. However, these
methods still suffer from high cost [need to extend the instruc-
tion set architectures (ISAs) of CPU] or security issues (key
leakage issues).

In this paper, we propose a new hardware control flow
integrity based on a lightweight encryption architecture with
advanced encryption standard (LEA-AES) to encrypt and
decrypt return addresses and instructions at indirect jump
destinations to defend against CRAs, which shows a good
balance among performance, security and cost in compari-
son with previous methods. This method is similar to the
PUF-based CFI [28], but it gains remarkable advantages
in security. Cryptographic CFI (CCFI) [29] also protects
control flow elements with AES. However, CCFI is built
on source codes and has limitations in performance over-
head and defending against JOP attacks. Although the AES
is not a linear encryption method, many studies [30]–[33]
have greatly reduced the latency of AES by using par-
allel techniques and adding hardware support. Besides,
Intel has embedded the AES instructions [33] (AESENC,
AESENCLAST, AESDEC, and AESDECLAST) into the x86
instruction set, which improves the efficiency of AES further.
There are several modes of AES, including electronic code-
book, cipher block chaining, cipher feedback, output feedback,

and counter (CTR). Different ISAs and different architec-
tures may have different return address lengths and different
instruction lengths. The counter mode (CTR) of AES encrypts
a self-increase counter with encryption key and exclusive
OR (XOR) the result with plaintext to get the ciphertext. It
is very suitable for protecting alterable length data since its
encryption block is not necessary to be 128-bit long. Besides,
it can be implemented to encrypt or decrypt data in parallel.
The experiments on the CTR mode of AES using the library
provided by Gueron [33] show that the latency of encrypting
or decrypting a byte is only about three cycles on average with
the plaintext block is 64-bit long. So, using AES to encrypt
and decrypt data will take very little influences on programs.
Besides, it is nearly impossible to get the key of AES even the
length of the key used is 128, so that LEA-AES has no key
leakage issues. In our design, LEA-AES will encrypt return
addresses of function-call and certain length of instructions
at indirect jump destinations before they are stored in the
relevant memory units. When executing the correlative instruc-
tions, they will be decrypted with the same key and the same
length. Those operations can be performed with current ISAs
that support AES, which enhance its usability a lot. The key
used in AES and the length of instructions to be encrypted or
decrypted are produced by a random number generator before
the programs are loaded into the memory. Our contributions
are as follows.

1) We employ AES to encrypt or decrypt the return
addresses of function-calls and certain length of instruc-
tions at indirect jump destinations to prevent ROP and
JOP attacks. This paper has no need for adding new
CPU instructions.

2) Compared with [28], this paper does not have the key
leakage issues since that it is very hard to break AES.
Besides, this paper employs random number generator
to generate the encryption–decryption key instead of
PUF [52], which makes it easier to be applied as most
computers may not have PUF.

3) The LEA-AES has very low performance overheads.
Performance evaluations indicated that the average run-
time and loading time overheads of LEA-AES are both
less than 4%; the average memory overhead is 0.62%,
which greatly outperform the software-based CFIs and
is in the same level as other hardware-based CFIs.

The remainder of this paper is organized as follows.
Section II introduces the basic mechanism of CRAs.
Section III indicates some existing defenses against CRAs,
especially describes CFI. The proposed method and its work-
ing mechanisms are elaborated in Section IV. The procedures
of protecting call and ret instructions to defeat ROP are given
in Section V. And then, Section VI shows the processes of
protecting indirect jmp instructions to defeat JOP. Performance
and potential security threats are analyzed in Section VII. The
evaluation results and analysis are reported in Section VIII.
Finally, we conclude in Section IX.

II. CODE REUSE ATTACKS

CRAs, including ROP and JOP approaches, make use
of existing codes rather than injected codes to attack a
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Fig. 1. Basic mechanism of JOP [2].

program [25], [28]. Therefore, CRAs may bypass the secu-
rity measures that prevent code injection attacks, e.g., the
DEP [25].

A. Return-Oriented Programming

After a call instruction is executed, the return address will
be pushed into the stack, which will be popped from the
stack again while the corresponding ret instruction is executed.
However, adversaries may exploit some software vulnerabil-
ities, for example, the stack or heap overflow vulnerabilities
and the string formatting bugs, to modify the return addresses
in the stack. If the return addresses are modified successfully,
CPU will then execute the instructions at the modified return
addresses, which will change the original control flow and
may help fulfill the attack. Following the idea, ROP attacks can
make use of the code gadgets that end with the ret instructions
to compose a new execution flow to form or partially form an
attack. First, the attackers exploit the useful gadgets in target
programs, and then organize the gadget chain carefully to form
a malicious program behavior. The transitions between code
gadgets of a chain are usually activated by stack overwriting
with the target gadgets. As a normal result of such an attack,
the attackers may control the system.

B. Jump-Oriented Programming

The direct jmp instructions have fixed jump destinations in
codes and cannot be employed to form a JOP attack. However,
the destinations of indirect jmp instructions are determined by
registers, which may be modified through some techniques
(e.g., memory leakages and stack or heap buffer overflows)
and software bugs (e.g., string formatting bugs) to form JOP
attacks. JOP attacks make use of the code gadgets that end
with the indirect jmp instructions [2] to form gadget chains. In
practice, near indirect jumps are enough for JOP attacks [34].
Using far indirect jumps to construct the JOP gadgets must
select the correct segments [34]. Fig. 1 shows the basic idea
of JOP [2]. There are two types of gadgets frequently used in
JOP attacks, i.e., the control gadgets and the function gadgets.
Function gadgets are employed to achieve malicious actions
(e.g., calling a specific system instruction). Control gadgets
are employed to modify the registers to transit the control

flow to function gadgets. Attacks can be fulfilled successfully
by executing dedicated sequences of function gadgets.

III. EXISTING DEFENSES TECHNIQUES

A range of defense methods against CRAs were proposed,
which can be classified into four types.

A. Randomization-Based Defenses

ASLR [1], [3], [5], [35], [36] is a randomization-based solu-
tion to defend against CRAs. It is supposed to be hard for
attackers to find correct entry addresses of gadgets because the
code and data regions will be randomly located in memory by
ASLR. The randomized addresses of code and data regions are
managed by an middle layer between the operating systems
and hardware. Nevertheless, the code and data regions are
actually not fully randomized when ASLR is employed in
modern operating systems [5], [28]; it is still probable for
attackers to acquire enough gadgets with the knowledge of par-
tial randomized codes. For example, Snow et al. [3] proposed
the just-in-time code reuse that achieved CRAs on programs
with ASLR techniques applied.

B. Detection-Based Defenses

ROPdefender [5], [37] defends against ROPs with detecting
techniques. ROPdefender dynamically detects ROP behav-
iors based on ret instruction evaluation [5]. It duplicates
return addresses onto a shadow stack and employ the idea of
just-in-time-based binary instrumentation to evaluate each ret
instruction during program’s execution [5]. However, it can-
not defend against JOP attacks in addition to performance and
memory overheads.

Kayaalp et al. [38] developed the SCRAP, a signature-based
detection which observes the behavior of programs and detects
the gadget execution patterns to prevent CRAs. First, SCRAP
builds a single state machine to record behaviors of pro-
grams [38]. Then, SCRAP integrates sate counters of state
machine into secure call stack to track the information about
the state of the attack [38]. At run-time, SCRAP detects the
execution patterns of gadgets, thus judging whether programs
are attacked by CRAs. SCRAP can be implemented entirely in
hardware at the commit stage of the pipeline using simple logic
circuits [38]. Besides, SCRAP is designed to be configurable
using a privileged system call that sets the detection machine
state, so that it can be applied on different architectures eas-
ily [38]. However, SCRAP does not consider just-in-time code
reuse [3] which constructs gadgets and attacks programs at
run-time.

DROP [22], [39]–[41] focuses on tracing malicious behav-
iors of ROP through tainted data [5]. First, DROP marks
untrusted data as tainted. The tainted data may be user input or
any input from an untrusted device [5]. After marking data as
tainted, taint analysis tracks the propagation of tainted data.
If tainted data is misused, the system will alert or kill the
program. Misuse of the tainted data is, for instance, using
the tainted data as the target of jmp/call or ret instructions.
Similar with ROPdefender, DROP cannot protect programs
from JOP attacks and introduces high performance overhead
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(30× to 50× for TaintCheck [41] and DYTAN [22]) when it
is applied [5].

C. Compiler-Based Defenses

G-Free [13] is a compiler-based approach by using gadget-
less binaries [5]. G-Free eliminates all unaligned free-branch
instructions inside an executable binary, and protect the aligned
free-branch instructions from being abused by an attacker [13].
First, G-Free modifies the compiler to guarantee that the resulted
binary does not contain unintended instruction sequences. Next,
the G-Free will protect the intended ret instructions at run-
time by inserting a short header at the entry of a function and
a relevant footer before its ret instruction [13]. Additionally,
G-Free has been applied on GNU libc [5], [13]. However,
each linked library and the original program codes have to be
compiled with G-Free if we want to provide a full protection
against ROP attacks, which might result in large false positives
if a library is not compatible to G-Free [5]. In addition, G-Free
cannot protect programs from JOP attacks either.

D. Instrumentation-Based Defenses

BR [25] enforces simple control flow rules present in
function-based programming languages [25]. Those rules dis-
allow arbitrary control flow transfers from one function into
the middle of another function, thus dynamically reduces the
possibility of the attackers to find exploitable gadgets needed
for CRAs [25]. BR also adds a shadow stack to record legal
return addresses and check them before ret instructions are
executed [25], [28]. Besides, BR can protect programs from
attacks that exploit unintended instructions by providing sim-
ple hardware support [25]. However, BR by design does not
support stack unwinding and tail jumps [25], [28].

TRSS [4], [23], [42] is built on top of DynamoRIO [43],
a dynamic binary rewriting framework. In TRSS, when call
instructions are executing, the return addresses will be pushed
into a shadow stack and return addresses check procedures
will be enforced when ret instructions are executing [23].
TRSS is also able to detect unintended sequences issued in
an ROP attack due to just-in-time-based instrumentation [5].
However, the mechanisms of DynamoRIO framework [43] do
not allow to instrument a program from its very first instruc-
tion and it depends on the variable of LD_PRELOAD to map
the DynamoRIO code into the addresses space of the appli-
cations [5]. Moreover, complex exceptions still need to be
considered in TRSS.

In addition, CFI [6], [24]–[27] is another representative
instrumentation-based defense technique that guarantees call,
ret and indirect jmp instructions only jumping to valid desti-
nations with respect to CFG. We describe CFI in detail in the
following section.

E. Control-Flow Integrity

As an instrumentation-based technique, CFI is a general
solution for CRAs. The main idea of CFI is to check whether
the program’s execution violates the CFG that is constructed
during compiling. There are two fashions of CFI, i.e., the
software-based CFI and the hardware-based CFI.

1) Software-Based CFI: Software-based CFI [24], [44]
ensures that call, ret, and indirect jmp instructions can only
direct to legal destinations specified in CFG by checking prein-
serted IDs. The ID-checking instructions are inserted before
each legal call, ret, and indirect jmp transitions according to
CFG. When CPU executes those instructions, the CFI check-
ing mechanism will check whether the programs are executed
as the preconstructed CFG. Any control flow transitions that
do not pass the ID checking mechanism will be rejected.

Theoretically, we can insert different IDs to different
control flow transitions to provide strong protections for
programs. However, this will introduce high performance
overheads and require more resources for IDs and check-
ing IDs. The performance overhead of software-based CFI is
about 21% [24]. To reduce the cost of traditional software-
based CFIs, a bunch of researches propose to use less IDs or
to comply with loosened CFGs. Compact CFI and random-
ization (CCFIR) [45] proposes to redirect the indirect jmp
instructions to a new springboard that is constructed during
compilation. By enforcing the indirect jmp instructions only
to jump to springboard, the CCFIR can provide a protection
for reusing indirect jmp instructions. There are three types
of IDs used in CCFIR for restricting control flows to reduce
the performance and memory overheads. Two IDs are used to
protect sensitive or nonsensitive functions and one ID is used
to protect call or indirect jmp instructions. Therefore, CCFIR
still have security drawbacks that attackers may use the con-
trol flow transitions with same IDs to construct a successful
CRA. In addition, there is a springboard used in CCFIR to
ensure CFI, which also takes more memory resources.

In summary, current software-based CFIs need to insert
IDs and IDs checking instructions or create accompany-
ing data structures, which introduces remarkable performance
and memory overheads [26]. Consequently, some recent
researches have turned to adding hardware support to defend
against CRAs.

2) Hardware-Based CFI: Several hardware-based CFIs
focus on reducing performance overheads of CFI, such as
hardware-assisted fine-grained CFI [26], [46], HAFIX [27],
and PUFs-based linear encryption [28].

Davi et al. [26] proposed a hardware-assisted fine-grained
CFI approach which introduces new instructions to ISAs to
protect call, ret, and indirect jmp instructions from being
reused by attackers. It guarantees indirect call instructions
and ret instructions comply with the new CPU instructions
through assigning different labels to different functions. The
main drawback of this method is that its cost of introduc-
ing new ISA instructions, which results in corresponding
changes of the compiler and related system software. Based on
hardware-assisted fine-grained CFI, Davi et al. [27] proposed
an HAFIX to particularly enhance ROP defense. HAFIX gives
real hardware implementations of backward-edge (returns) CFI
targeting bare metal code, and needs to add new assembler
instructions to ISA.

CCFI [29], which is based on cryptographic message
authentication codes (MACs) to protect control flow elements,
such as return addresses and frame pointers, function point-
ers, vtable pointers, and exception handlers. The MACs are
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calculated by employing a single block of AES to those ele-
ments and stored beside them. They are used to verify the
control flows to check whether the programs are attacked.
CCFI enables a much fine-grained classification of sensitive
pointers through dynamic checks and it can prevent CRAs.
This paper has the same basic mechanism with CCFI except
that it protects return addresses and indirect jumps rather than
code pointers. However, CCFI and this paper protect programs
on different layers. CCFI is built on source codes layer and
our method is designed on architecture layer. Besides, it may
introduce more memory overhead to store MACs than this
paper when protecting return address, theoretically, because
that we do not insert additional information to function calls.
Additionally, it provides no protection for indirect jmp instruc-
tions since they do not appear in source codes. The indirect
jmp instructions are used in assembly codes. Therefore, CCFI
may not prevent JOP attacks.

PUFs-based linear encryption [28] protects programs from
ROP and JOP by linearly encoding and decoding the return
addresses and the instructions at indirect jump destinations.
It encodes some bytes of the first instruction at the target
address of a indirect jmp instruction by XOR and decodes
them after the indirect jmp instruction is executed [28].
Meanwhile, it similarly encodes the return address corre-
sponding to a call instruction and decodes it when the ret
instruction is executing [28]. However, the PUF-generated key
for XOR encoding/decoding is vulnerable to memory leakage
and debugging attacks (using both encoded and original plain
text to deduce the key) [28], in which attackers may get the
keys to construct encoded CRA gadget chains successfully.

In this paper, we propose an LEA using CPU-built-in
AES to balance the security, performance and cost challenges
previous works were faced with.

IV. CONTROL FLOW INTEGRITY BASED ON LIGHTWEIGHT

ENCRYPTION ARCHITECTURE

The security drawback of the PUF-based linear encryption
method [28] severely degrades its usability in practice in spite
of its advantages in performance and limited impact to the
CPU architecture over the traditional methods. In order to
resolve the vital security issue and to reduce the changes to
current CPU architecture further, we propose the LEA using
CPU-built-in AES to defend against CRAs. AES is one of the
proved state-of-the-art secure primitives and has been adopted
by modern CPU architectures as a default feature, e.g., the
Intel i7 CPUs. In addition, the CTR mode of AES can encrypt
alterable length of blocks and it can be implemented in paral-
lel. Therefore, it is very secure and low cost to use the CTR
mode of AES to encrypt return addresses and instructions at
indirect jump destinations in comparison with the PUF-based
linear encryption method [28] due to its security against key
leakage and minimal revision to current CPU architectures.

A. Assumptions

In this paper, we first make several assumptions as follows.
1) We assume that sufficient basic security measures have

been applied on the target systems, such as the DEP,

Fig. 2. CFI based on LEA and data flows. The data flows are: 1© the
encrypted or decrypted instructions between instruction cache and EDU, 2©
the return addresses or instructions to be encrypted from instruction decoders
to EDU, 3© the decrypted addresses from EDU to IP, and 4© the encrypted
addresses from EDU to data cache (stack).

under which the attackers cannot modify the executable
binaries at run-time. Actually, DEP has been applied on
most well-known operating systems (e.g., Windows and
Linux).

2) We assume that the CFGs of target programs are avail-
able. Actually, researchers have proposed a range of
methods to construct CFGs based on program binaries
and the coverages of CFGs is also increasing.

3) We assume that the encryption–decryption keys stored
in private registers cannot be accessed and modified by
any software. Actually, this is also easy to realize by
restricting the data flow of those registers off the public
data paths.

B. Architecture Overview

Fig. 2 shows the new CFI based on an LEA-AES and
its connections with CPU. We add a LEA-AES module to
the current CPU architecture. There are four units in the
LEA-AES, namely a encryption–decryption unit (EDU), a
register KEY_CFI, a register LEN_CFI, and a random num-
ber generator unit (RGU). EDU is responsible for encrypting
and decrypting return addresses and instructions of indirect
jump destinations with the CPU-built-in AES. The register
KEY_CFI stores the key for EDU to encrypt or decrypt data,
and the register LEN_CFI stores the length of instructions
to be encrypted or decrypted. Both KEY_CFI and LEN_CFI
value are randomly generated by the RGU before the program
is loaded into the memory. When the program is loading, EDU
encrypts LEN_CFI length of instructions at the destination of
each indirect jmp instruction with the key KEY_CFI. When an
indirect jmp instruction is executing, CPU sends the LEN_CFI
length of instructions at its destination to EDU to decrypt, after
which the decrypted instructions (stored in register xmm) cor-
responding to the jump destination will be connected with the
relevant memory units to be decoded and executed correctly.
Similarly, EDU also encrypts the return addresses correspond-
ing to each call instruction before they are stored into the
stack. When CPU executes ret instructions, CPU sends the
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return addresses popped from the stack to EDU to decrypt.
The decrypted results are loaded into the register instruction
point (IP) to continue.

C. Random Number Generator

Random number generators [47] are widely used for var-
ious security related applications, for instance, randomizing
the addresses of data or instructions and generating keys
for encryption and decryption. Although RGU may still not
generate theoretically randomized data with many perfect
improvements [47]–[49], its security is also accepted since the
random numbers are only regarded as keys and data lengths
for AES that is securely guaranteed. In case of more perfect
solution, a PUF unit can also be considered to be the random
number generator with certain cost invested [53].

D. Control Flow Graph

The CFG is a directed graph which includes the control
flow transitions of the programs. Generally, the call, ret, and
indirect jmp instructions are the most responsible instructions
that take the control flow changes. Therefore, the CFG nor-
mally consists of every function-call and every indirect jump.
The CFG can be constructed by source-codes analysis, binary
analysis or execution profiling [24]. In our design, we only uti-
lize the CFGs when the programs are loading into the memory
and the EDU will encrypt certain length of instructions at indi-
rect jump destinations according to the CFG. After that, either
the decryption of jump-related instructions or the encryption
and decryption of the return addresses are only performed at
run-time without the CFG involved.

V. DEFENDING ROP ATTACKS

The return addresses are the main elements that are modi-
fied in ROP attacks. Therefore, protecting return addresses is
effective to thwart ROP attacks. In this paper, we employ the
LEA to encrypt the return addresses to protect against ROP
attacks.

Fig. 3 shows the processes of protecting return addresses
against ROP attacks. Normally, when a call instruction exe-
cutes, CPU will first push the return address into stack and
then jump to the target function to execute instructions. When
a ret instruction executes, CPU will first pop the return address
out of the stack and then jump to it to execute instructions.
In LEA-AES, CPU first sends the return address to the EDU
to encrypt when call executes, and then pushes the encrypted
return address into the stack. When ret executes, CPU first
pops the encrypted return address out of the stack for EDU to
decrypt, and then sends the decrypted address that is securely
guaranteed to IP register for the program to jump to.

If attackers modify the return addresses in the stack, the
default decryption operations of LEA-AES on those addresses
will be forced to execute when functions are returning. The
unexpected decryption cannot support a successful jump to the
expected address of attackers, which may cause a system error
or exception. Fig. 4 shows an example of using LEA-AES to
protect against ROP.

Fig. 3. Protecting return addresses (run-time). Heavy lines and dotted lines
represent the procedures of protecting call instructions and ret instructions,
respectively.

Fig. 4. Example of protecting return addresses using LEA-AES.

Normally, when the instruction of callq 41e250 is execut-
ing, CPU will push the return address of 00 43 89 74h into
stack. When the corresponding ret instruction is executing, the
program will return to 00 43 89 74h that is popped from stack
to execute instructions. In our design, CPU will send the return
address to EDU for encrypting when callq 41e250 is executing
and EDU will push the encrypted result of 4A 3C 48 A2h into
stack. Meanwhile, when the ret instruction is executing, CPU
will pass the return address popped from stack to EDU for
decryption, after which, EDU will pass the decrypted address
into the register IP to continue correctly. If the return address
popped from stack is not 4A 3C 48 A2h, the decrypted result
will not be 00 43 89 74h and a system error may occur.

VI. DEFENDING JOP ATTACKS

The indirect jmp instructions are the main elements that are
used by attackers to achieve JOP attacks. In this paper, we pro-
tect the indirect jmp instructions by encrypting and decrypting
certain bytes of codes with AES at the target addresses.
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(a)

(b)

Fig. 5. JOP defense using LEA-AES. (a) Preprocess for indirect jump
(loading time). (b) Protecting indirect jump while executing (run-time).

Fig. 5 shows the procedures of protecting indirect jmp instruc-
tions to defend against JOP attacks. Under normal conditions,
when a program is loading into memory, the data and codes of
the program are loaded into corresponding memory addresses.
Additionally, after a indirect jmp instruction is executed, CPU
will send the first instruction at target address to instruction regis-
ter and execute instructions at target address. In LEA-AES, when
programs are loading into the memory [Fig. 5(a)], EDU will
encrypt some bytes of instructions at indirect jump destinations
with the key stored in KEY_CFI and the encryption–decryption
length stored in LEN_CFI. When CPU executes a indirect jmp
instruction [Fig. 5(b)], some bytes of instructions at its target
address will be decrypted by EDU with the same key and the
same length. The decrypted results of AES instructions pro-
vided by Intel are stored in register xmm. However, the lengths
of instructions in some ISAs are alterable, such as Intel x86
ISA, the decrypted result may not a instruction. In our design,
after decrypting the instruction, CPU decodes the instructions
(determined by decrypted results and instructions behind the
encrypted instructions in memory) and continues the execution
correctly. The instructions stored in memory are not altered,
including the encrypted instructions. Hence, when the same
indirect jmp instruction is executed, the first LEN_CFI bits of
instructions at its destination are remain encrypted.

If the target address of a indirect jmp instruction is changed
to elsewhere by a tentative JOP attack, the instruction segments

Fig. 6. Example of protecting indirect jmp instructions.

at the changed destinations will be forced to be decrypted after
the indirect jmp instructions are executed. An exceptional error
can occur when unencrypted codes are decrypted and run as
normal. A potential attack, however, may be still valid when
the target address is changed right to another candidate jump
destination since all candidate destinations are encrypted at
loading-time. In this case, there is a theoretical possibility of
being attacked by reusing candidate jump destinations, which
is also discussed in detail in the section of security analysis.

As a special case, some instructions at indirect jump des-
tinations may also need to execute sequentially without a
preceding jump, e.g., the do-while statement in which the
instructions inside the loop do not have a jump to start in the
first pass (the second and later passes start with jump instruc-
tions out of the while-statement). In such cases, errors will
occur because the EDU does not decrypt those instructions
without a preceding jump instruction triggering it. In order
to make those instructions decrypted normally, we introduce
a redundant indirect jmp instruction before each candidate
indirect jump destination, which just redirects to its succeed-
ing instruction and takes the responsibility of triggering the
decryption at the destination. Fig. 6 shows an example of
protecting indirect jmp instructions using LEA-AES.

In this example, the value of LEN_CFI is 3 and the target
address of jmp *%rax is 00 42 5A C8h. EDU will encrypt the
first 3 bytes of the instruction 48 83 EC 08h at the address
of 00 42 5A C8h when the program is loading into memory.
The encrypted result is 9A 3A 48 08h. After the instruction
of jmp *%rax is executed, the EDU will decrypt the first 3
bytes of the instruction 9A 3A 48 08h, which is 48 83 EC 08h.
Then CPU will execute programs with correct instructions. In
this example, we insert two instructions of mov $0x00435A36,
%edx and jmp *%edx before the indirect jump destination to
guarantee the programs to be executed correctly. Normally, the
addresses of indirect jump target instructions after applying the
LEA-AES are not the same with them in original programs
due to the inserted instructions. Therefore, the value moved to
the %edx is 00 43 5A 36h instead of 00 42 5A C8h.

VII. PERFORMANCE AND SECURITY ANALYSIS

A. Performance Analysis

We employ the CTR mode of AES as the encryption method
in EDU. Let p be the target text to encrypt, e.g., the return
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addresses and instructions at indirect jump destinations, and
let c be the corresponding ciphertexts. Let e be the encryp-
tion method (i.e., the AES in this paper), and let d be the
corresponding decryption method. Let k be the encryption–
decryption key. The encryption of p and decryption of c can
be formulated as

c = ek(p)

p = dk(ek(p)). (1)

Suppose that there are n call instructions and m indirect
jmp instructions are executed in programs, we assume that:
1) the average execution time of a instruction is t and 2) the
average execution time of encryption or decryption in EDU is
t∗. So that we can get the loading and run-time overheads of
LEA-AES as

Overhead = 2nt∗ + 2m
(
t∗ + t

)
. (2)

In (2), 2nt∗ represents the run-time of encryption and
decryption operations for call and ret instructions since that
every function-call has a relevant function-return, 2mt∗ is the
run-time of the encryption and decryption operations for the
indirect jmp instructions, and 2mt is the run-time of the two
inserted instructions before each indirect jump destination.

Additionally, the CTR mode of AES in library provided by
Gueron [33] is implemented as assembly function with paral-
lelizing four blocks, its efficiency is very high. We have tested
the average cycles for a byte in CTR mode with 64-bit long
blocks and 128-bit long key. The results indicated that it will
take about three cycles to encrypt a byte. Hence, the run-time
for encrypting or decrypting a return address or instruction in
EDU is acceptable. We assume that the t∗ = kt, (2) will be

Overhead = (2nk + 2m(k + 1))t. (3)

The k in (3) is a constant. Hence, the loading time and
run-time overheads of LEA-AES is O(n + 2m). The run-
time overhead can be further reduced by store the encryption
result and decryption result into cache. Besides, we insert two
instructions (mov and indirect jmp) before every indirect jump
destination, therefore, the memory overhead of LEA-AES is
O(m). Hence, the LEA-AES will introduce less run-time and
memory overheads than traditional CFI methods.

B. Security Analysis

1) Key Leakage Issue: We employ the AES in LEA-
AES to encrypt and decrypt return addresses and instructions
at indirect jump destinations. Compared to the PUF-based
method [28] that employed the XOR as the encryption method
with the keys generated by PUF, using AES is much securer
but takes more cycles than XOR encryption. The XOR encryp-
tion method is a linear encryption method, and it can encrypt
or decrypt data in one cycle [28]. So, using XOR to encrypt
and decrypt data will introduce very little performance over-
heads [28]. However, the XOR encryption method is not secure
any more when the plaintext and the ciphertext are obtained
by attackers in the same time. The attackers may compare
the unencrypted data of programs with the encrypted data
to get the encryption–decryption keys by memory leakage,

debugging or other techniques [28]. It is very easy to calculate
the key in such circumstances, which causes the key leakage
issues. If attackers get the keys, they can use those keys to con-
struct the encrypted return addresses to organize ROP attacks.
Even the keys can be different for different programs and for
different executions of the same program, attackers can still
use the same method to get the key for every execution and
they can use those keys to organize CRA attacks.

Since occasionally cracking an AES key must take a lot
of time, we believe it is practically securer to use RGU to
generate keys randomly for each program at each run with
mentioned limited impact to current architectures. However, if
we use fixed AES keys in a similar way of trusted computing
architectures, it will be not secure enough any more because
the attackers may get the key through many techniques like
side channel attacks [50].

In our experiments which will be showed in Section VIII,
the self-increase counter value of CTR mode is start at 0
for every encryption and decryption. In order to improve the
security, for one return address encryption or decryption, the
counter value may be set as the stack address where it will be
stored, for instructions encryption or decryption, the counter
may be set as the addresses of instructions.

2) False Positive/Negative Rate: The false postive rate and
false negative rate are two important indicators to estimate
the security and reliability of a security strategy [28]. The
false positives mean that some normal executions of programs
are judged as attacks and the false negatives mean that some
attacks are not prevented. In this paper, the LEA-AES relies on
the CFG to preprocess the jump instructions to defend against
JOP. Researchers have proposed several methods to increase
the coverage of the CFG. Unfortunately, no practical tools that
can analyze a program to form a complete CFG [25]. Similarly
with all other CFI methods, the CFG of a program used in
LEA-AES is not complete. The result is that some indirect
jump destinations do not appear in CFG and the instructions
at those destinations will not be encrypted when loading the
programs. When a indirect jmp instruction jump to those des-
tinations, LEA-AES tries to decrypt unencrypted instructions
before jumping, the decrypted instructions will be abnormal
instructions, a false positive will occur. This should be avoided
as far as possible.

The false positives are introduced by the incomplete CFG.
Therefore, improving the coverage of indirect jumps in CFG is
responsible in reducing the false positive rate. The following
solutions may be useful to construct more complete CFG.

1) Vulcan [51] is publicly the best tool available to con-
struct the CFG, which provides both static and dynamic
code modification as well as a system-level analysis for
heterogeneous binaries across instruction sets [51]. The
Vulcan can be used to improve the completeness of CFG.

2) The CFG may be updated dynamically as long as a
false positive happens. When programs are executing,
the indirect jumps formerly not included in CFG can be
added into CFG.

3) A software testing procedure may also be added to con-
struct more complete CFG for a software, which is
similar with traditional software testing.
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TABLE I
CHARACTERISTICS OF BENCHMARKS

In addition to false positives, there are still possible false
negatives existing in LEA-AES. For example, a transition
between the legal jump destinations may not be a legal jump of
the control flow in CFG, but get no exceptions from LEA-AES
because LEA-AES uses the same key and the same length to
encrypt and decrypt instructions. As another example, attack-
ers may record the encrypted return addresses when they are
pushed into stack and overflow the stack with those encrypted
return addresses to attack programs with ROP. Consequently,
such violations against the control flow cannot be found by
LEA-AES, which is called false negatives, i.e., the abnormal
control flow violations are not detected. Nevertheless, the false
negative rate is actually very low due to the low proportion of
the candidate indirect jump destinations and available return
addresses for attacks over the entire code. Evaluation results
will also be shown in the following section.

The LEA-AES uses the same key and the same length to
encrypt and decrypt data, which is responsible for false nega-
tives. Therefore, distinguishing different return addresses and
different indirect jumps are useful to reduce false negative rate.
We are working on this topic. The following solutions may be
useful to distinguish different control flow transitions.

1) For one return address encryption or decryption, the ini-
tial self-increase counter value used in CTR mode may
be set as the stack address which it is stored. The result
is that the same function call may get different encrypted
return addresses for different executions since its stack
addresses may be not the same.

2) For one instruction encryption or decryption, the ini-
tial self-increase counter may be set as a specific value,
such as a hash value of addresses of all indirect jump
instructions that can jump to it. The hash maps value
may be calculated before the programs are loaded into
the memory according to the CFG and may be imple-
mented with hardware to increase the efficiency. As a
result, for an indirect jump destination, only the indirect
jump instructions that can jump to it have the correct
decryption counter value. However, more hardware and
memories are required to manage the hash map.

VIII. EVALUATION RESULTS

The performance overhead of the LEA-AES were evaluated
on the benchmark of 12 different types of open source pro-
grams by simulation, in which the CTR mode of full ten-round
128-bit AES instructions (provided by Gueron [33]) were
inserted into the programs before every function call, function
return and indirect jump instruction. For every encryption or
decryption, the self-increase counter value starts at 0. Some
indirect jump instructions were also inserted before indirect

jump targets according to the CFG to guarantee the target
instructions can be correctly executed when they are exe-
cuted in order. Table I shows the detailed characteristics of
the benchmark. The programs focus on different application
types, such as game, plotting, picture tool, etc. The tests were
performed on a desktop computer with a 64-bit Intel x86 core
i5 CPU (with the 128-bit AES built-in), 4-GB memory and an
Ubuntu 12.04 OS.

A. Constructing CFG

In this paper, we employed a binary-analyzing CFG con-
struction tool [24] to extract the indirect jmp instructions and
their intended destinations, in which the executable binaries
were disassembled to acquire the addresses of indirect jump
instructions and basic blocks in the same segment. The CFG
is a directed graph. The nodes represent the addresses of the
indirect jmp instructions and their destinations. Each indirect
jump transition becomes an edge in the CFG.

B. Inserting Instructions

In this paper, we inserted two instructions before each
candidate destination of indirect jmp instructions to avoid a
sequential execution disorder as mentioned in JOP defense.
One instruction is to move the candidate destination address
to a temporary register, and the other is a indirect jump instruc-
tion whose target address is the address stored in the temporary
register. The two instructions do not have meaningful functions
except for guaranteeing the correct execution at those candi-
date destinations when the program just sequentially flow there
without a jump instructions (e.g., the first loop of the do-while
statement).

C. Performance of LEA-AES

We took the total run-time and memory usages as
performance gauges. The run-time of a program is the time
during its start execution and end execution. The loading time
of a program is the time during its start-up and start execution.
We inserted time functions before the first executable instruc-
tion and the last executable instruction to record the time
of start execution and end execution. The start-up time can
be acquired directly. We compared our method (LEA-AES)
with the PUF-based architecture (XOR) [28]. Table II shows
the time and memory overheads of the two methods. The
LEN_CFI is set as 64 that is the word length of our experiment
machine. We can see that the LEA-AES had 0.62% average
memory overhead, about 3.19% average run-time overhead
and 3.53% average loading time overhead. The memory over-
head of LEA-AES is caused by the inserted instructions,
and the loading time overhead is caused by the encryption
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TABLE II
TIME AND MEMORY OVERHEADS OF LEA-AES [28]

(a)

(b)

Fig. 7. (a) Loading time and (b) run-time of origin programs and modified
programs.

of the instructions at indirect jump destinations. The PUF-
based method (XOR) had 0.87% average run-time overhead,
about 0.76% average loading time overhead [28] and the same
memory overhead as LEA-AES (the same inserted instruc-
tions). From the results, we can see that LEA-AES obtained
similar level of performance with the PUF-based method,
which is in the best level compared to traditional CFI methods
in addition to its good security and limited architecture impact.

Fig. 7 gives a schematic illustration about the loading time
and run-time overheads of the LEA-AES and XOR method.
The average performance overheads of our method are almost

TABLE III
GADGETS REDUCTION AND FALSE NEGATIVE [28]

negligible. The reason of the extremely low overheads is that the
CPU-built-in AES has been implemented to encrypt and decrypt
data within very little cycles and it is only used to encrypt
very small proportion of the code in LEA-AES. Furthermore,
LEA-AES does not need to insert IDs and check IDs, which
also greatly reduces its run-time and memory overheads.

D. False Positive/Negative Rate

The false positive rate of a CRA defense technique is very
hard to acquire because of the difficulty of constructing a com-
plete CFG as the gold [25]. In fact, if we can find those absent
control flow transitions to CFG, we can put them into the CFG
and eliminate the false positives. The false negatives of LEA-
AES are caused by the indirect jumps and available return
addresses. Normally, the gadgets that can be used to achieve
CRAs should not be very long, therefore, not all instructions
at indirect jump destinations and return addresses can be used
to construct gadgets. We evaluated the total gadgets available
and the false negative rate of LEA-AES as shown in Table III.
From the results, we can see that the gadgets which can be
used for attackers to organize ROP attacks and JOP attacks
were reduced about 88.93% on average by using LEA-AES
for return addresses and indirect jmp instructions. This means
that the probability to achieve CRAs can be reduced a lot
with LEA-AES employed. The results also showed that the
false negative rate is less than 1%.
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IX. CONCLUSION

Traditional CFI methods suffer from performance, cost
or security issues in protecting programs from CRAs. For
example, the software-based CFIs have high performance over-
heads and most hardware-based CFIs need to revise current
ISAs, which greatly reduces their usabilities. A most recent
PUF-based architecture can have outstanding performance and
limited architecture impact [28]. However, it still suffers from
the security issue of key leakages. In this paper, we pro-
pose a new CFI based on an LEA-AES to resist CRAs with
extremely low run-time overheads and architecture impacts.
The LEA-AES can protect call, ret, and indirect jmp instruc-
tions by encrypting and decrypting return addresses and certain
length of the instructions at indirect jump destinations with-
out introducing new ISA instructions. For ROP, the encrypting
and decrypting operations for return addresses are performed
when the call or ret instructions are executing. For JOP, the
encrypting operations for instructions are performed when the
programs are loading into the memory, and the decrypting
operations for instructions are performed when the indirect jmp
instructions are executing. Performance evaluations showed
that the proposed LEA-AES only introduced 3.19% run-time
overhead and 0.62% memory overhead on average.

In future work, we may employ hash-mapping schemes in
JOP protection to lower the false negative rate further. We can
set multiple candidate keys for different indirect jmp instruc-
tions to choose through a hash-mapping scheme. In such cases,
the instructions at different indirect jump destinations may be
encrypted with different keys and the malicious control flow
jump among those instructions may not appear any more.
Meanwhile, we can also use advanced program analysis to
increase the coverage of the CFG to reduce the false positive
of LEA-AES. A pure-hardware LEA-AES evaluation may also
be considered to validate the practical usability of this paper.
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